This flashcard is designed as a brief introduction into using $\LaTeX$ with SASENSEI. With LaTeX you can introduce functional mathematical formulae into your questions and explanations. Note: At present SASENSEI does not support the use of LaTeX in your answer options.

Firstly a simple introduction. To use $\LaTeX$ with SASSENSAI you make use of the dollar ($) symbol. • Use one leading and one trailing dollar will produce an 'inline expression'. e.g. $\LaTeX\$
• Using two leading and two trailing dollar signs will produce a 'displayed formula'. e.g $$\LaTeX$$

For a summary of $\LaTeX$ the followings URLS may be useful: $\LaTeX Symbols Summary$ The Comprehensive $\LaTeX$ Symbol List

In the table below are some examples of markup with the result of the rendered markup shown in the third column.

Description Markup Effect
Subscript $$x_i$$ $x_i$
Superscript $$x^j$$ $x^j$
Variable list $$x_1,x_2,x_3,\dots,x_n$$ $x_1,x_2,x_3,\dots,x_n$
Degrees $$10^{\circ}C$$ $10^{\circ}C$
Simple formula $$x^2 +y^2 = 1$$ $x^2+y^2=1$
Square root $$y=\sqrt{1-x^2}$$ $y=\sqrt{1-x^2}$
Pythagoras $$a^2+b^2=c^2$$ $a^2+b^2=c^2$
Euler's Identity $$e^{i\pi}=-1$$ $e^{i\pi}=-1$
Simple Fraction $$x=\frac yz$$ $x=\frac yz$
Population Standard Deviation $$\sigma = \sqrt{\frac 1N\sum_1^N(x_i - \mu)^2}$$ $\sigma = \sqrt{\frac 1N\sum_1^N(x_i - \mu)^2}$
Euler Product $$\displaystyle \sum_{n} \frac{1}{n^s} = \prod_{p} {\frac{1}{1 - \frac{1}{p^s}}}$$ $\displaystyle \sum_{n} \frac{1}{n^s} = \prod_{p} {\frac{1}{1 - \frac{1}{p^s}}}$
Cardinality of the Continuum $${\mathbb{R}} \sim {2^{\mathbb{N}}}$$ ${\mathbb{R}} \sim {2^{\mathbb{N}}}$
Gaussian Integral $$\displaystyle\int_{-\infty}^\infty e^{-x^2} dx = \sqrt \pi$$ $\displaystyle\int_{-\infty}^\infty e^{-x^2} dx = \sqrt \pi$
LaTeX $$\LaTeX$$ $\LaTeX$